Michał Kazimierczak
 Państwowa Wyższa Szkoła Zawodowa we Włocławku

PROCES OBRÓBKI PRZEDMIOTU
KLASY KORPUS NA OBRABIARCE
ZESPOŁOWEJ ORAZ ZAŁOŻEŃ
KONSTRUKCYJNYCH TEJ OBRABIARKI

Project of the machining process of the class of the body on the combined machine tool and the design assumptions of this machine

Streszczenie:
W artykule przedstawiono podstawowe pojęcia dotyczące procesu technologicznego oraz scharakteryzowano poszczególne wielkości produkcji.
Na podstawie wysunięcia wynikającego części klasy korpus i założonej wielkości produkcji t.j. 100 000 szt. Opracowano proces obróbki przedmiotu na obrabiarkę zespołową. Następnie wskazano założenia, jakie stawia się takim maszynom obróbkowym, by ostatecznie przedstawić schematyczne modele 3D poszczególnych zabezpieczeń i schematyczny widok całej obrabiarki.
Ciągle rozwijający się przemysł maszynowy wymaga opracowywania nowych metod i sposobów obróbki. Nowoczesne obrabiarki umożliwiają kreowanie nowych procesów obróbkowych. Wpływa to korzystnie na czas wykonania przedmiotu, co przekłada się automatycznie na niskie koszty jego wytwarzania.

Słowa kluczowe: proces technologiczny, obrabiarka zespołowa

Abstract:
The paper present the basic concepts of the technological process and characterizes respective production volumes.
Based on the executive drawing of the body-class part and the estimated production volume, meaning 100 000 units, the process of machining the object on a compound machining tool was established. Subsequently, the requirements that need to be met by such machining tools were specified. Lastly, 3D schematics of subsequent actions were presented and a schematic overview of the entire machining tool.

The constantly changing machine industry requires new methods and techniques of machining. Modern machining tools make it possible to create new machining processes. It shortens the time it takes to make an object, which in turn lowers the costs of making it.

Keywords: technological process, compound machining tool
1. Wstęp
1.1. Wielkości produkcji i ich charakterystyki

W zależności od danych wejściowych do rozpoczęcia produkcji takich jak: zapotrzebowanie na dany przedmiot, możliwości zakładu, wielkości zamówienia i kosztów wyprodukwania określa się wielkość produkcji. Występują trzy zasadnicze rodzaje wielkości produkcji: jednostkowa, seryjna i masowa [2].

Produkcja jednostkowa określona jest liczbą 1 ÷ 50 sztuk w zależności od wielkości i kształtu wytwarzanego wyrobu. Wykonuje się jeden lub kilka części obrabianych jednorazowo, może się to jednak powtórzyć, lecz brak tu regularności i jeśli to nawet nastąpi to po dość długim okresie czasu. Wykorzystuje się w niej obrabiarki uniwersalne, wyposażone w standardowe, znormalizowane dla danej maszyny uchwyty. Używa się typowych narzędzi skrawających, miedzy innymi: wiertła, frezy, noże tokarskie etc. popularnie dostępnych w sprzedaży. Przedmioty obrabiane często będące konstrukcją spawaną wykonuje się z półfabrykatów hutniczych, w niektórych innych przypadkach stosuje się odlewy w formach piaskowych. Do pomiarów używa się wyłącznie prostych narzędzi pomiarowych takich jak suwmiarki, mikrometry, średnicówki i tym podobne. Operacje ręczne mają w tym typie produkcji duży udział, przejawia się to w takich operacjach jak trasowanie, gwintowanie, gratowanie, co niekorzystnie wpływa na czas wykonania elementu [2].

Produkcja seryjna dzieli się na trzy grupy: (małoseryjna 5 ÷ 500 sztuk w serii; seryjna 100 ÷ 5000 sztuk w serii; wielkoseryjna 300 ÷ 50 000 sztuk w serii w zależności od wielkości i kształtu wytwarzanego wyrobu). Odpowiednio do wielkości serii stosuje się w większym lub mniejszym stopniu oprzyrządowanie specjalne do obrabiarek uniwersalnych, to znaczy specjalne uchwyty obróbkowe tokarskie, wiertarskie, frezarskie etc., ale także specjalne głowice narzędziowe (za przykład takiej obrabiarki może posłужyć tokarka rewolwerowa). Półfabrykatami są tu odkuwy, odlewy piaskowe i kokilowe, niekiedy ciśnieniowe. Obok typowych narzędzi pomiarowych stosowane są, pasametry oraz różnorakie sprawdziany. Operacje ręczne mają mniejszy udział w porównaniu z produkcją jednostkową [2].

Produkcja masowa od powyżej 10000 sztuk ÷ do powyżej 50 000 sztuk w zależności od wielkości i kształtu wytwarzanego wyrobu. Zastosowanie znajdują tutaj obrabiarki zespołowe i linie obróbce dedykowane i stworzone pod konkretny wyrób. Maszyny te mogą pracować w trybie ciągłym przez długie okresy czasu obrabiając tym samym wiele partie przedmiotów. Zastosowanie mają tu półfabrykaty typu: odlewy ciśnieniowe i odkuwy. Koncentracja operacji wykonanych jednocześnie lub zabiegów w jednym przejściu narzędzia znacznie skraca czas obróbki, co przekłada się na wyraźny wzrost wydajności procesu [2].
1.2. Proces produkcyjny a technologiczny

Proces produkcyjny to zbiór wszystkich niezbędnych procesów (prefabrykacja, obróbka skr awaniem, obróbka chemiczna, kontrola jakości, pakowanie, magazynowanie, konserwacja i dystrybucja) do wytwarzania określonego wyrobu [5].

Proces technologiczny ma na celu zmianę właściwości materiału wejściowego lub półfabrykatu pod względem kształtu, wymiarów, struktury powierzchni, ale także własności fizykochemicznych, twardości, udarności, sprężystości, wytrzymałości, odporności na korozję itp. [2].

Do sporządzenia procesu technologicznego, technolog musi mieć niezbędne dane wejściowe takie jak: dokumentacja konstrukcyjna, program produkcji, oraz informacje o dostępnych środkach produkcji [5].

Dokumentacja konstrukcyjna zawiera: rysunek ofertowy, schematy kinematyczne, rysunek zestawieniowy całości, rysunki zestawieniowe zespołów, rysunki zestawieniowe podzespółów oraz rysunki wykonawcze części [5].

Plan produkcji jest to ilość wyprodukowanych elementów w danym okresie czasu. Stanowi on podstawę do opracowania głównego harmonogramu produkcji. Opracowany na podstawie planu sprzedaży oraz analizy obciążeń linii produkcyjnej [3].

Warunki techniczne są uzupełnieniem dokumentacji technologicznej i zawierają opis możliwości danych linii obróbko wych czy też poszczególnych obrabiarek. Jest to istotne w sporządzaniu procesu technologicznego. Struktura procesu technologicznego przedstawiona jest na rysunku 1 [2].

Rysunek 1. Strukturalny schemat procesu technologicznego

Źródło: Feld M. Podstawy projektowania procesów technologicznych typowych części maszyn. WNT, Warszawa 2018 [2].
2. Dane wejściowe do procesu
2.1. Rysunek wykonawczy KMK0.00.05
2.2. Założona wielkość produkcji 100 000 szt.
2.3. Półfabrykat

Półfabrykatem do rozważanego procesu jest odlew ciśnieniowy ze stopu aluminium AK9 / EN AW-43 300 (AlSi9Mg) zawierający wymagane nadadatki obróbkowe. W celu zwizualizowania, przedstawiono go w 3D na rysunku 2.

Rysunek 2. Model 3D półfabrykatu do produkcji masowej

źródło: Opracowanie własne.

3. Dokumentacja technologiczna

Proces technologiczny opracowano na skróconej dokumentacji składającej się z:
• Rysunku wykonawczego przedmiotu (p. 2.1),
• Karty technologicznej,
• Instrukcji obróbki nr 1 i nr 2,
• Instrukcji kontroli technicznej,
• Karty normowania obróbki.
<table>
<thead>
<tr>
<th>Nr. rys. KMK 0.00.05</th>
<th>Nr jednostek</th>
<th>Nr narzędzi</th>
</tr>
</thead>
</table>

PWSZ WŁOCLAWEK

INSTRUKCJA OBRÓBKI nr 2

Nazwa części: Korpus

Str. operacji: 20

Opuszczał:
Michał Kazimierczak

Data: 03.01.19

Frezowanie, wytaczanie

Produkcja masowa
(szt. 100 000)

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Treść zabiegu</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zamocować przedmiot w uchwycie</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | Wiercić jednocześnie 2 otwory zgrubnie ø 8,5 zachowują rozstaw 88±0,1 oraz pogłębić ø 12 na głębokość 8. Planować powierzchnie czołową otworu. Wytaczać zgrubnie na ø 25 i ø 21 wg rysunku. Wiercić otwór ø 4,8, gwintować M 6 przelotowo, planować powierzchnię czołową otworu na wymiar 1,5. | 3; 1a; 5
1; 3; 4a |
| 3 | Wytaczać otwór dokładnie na ø 26J6 i ø 22J6 wg rysunku. Wiercić jednocześnie 2 otwory zgrubnie ø 4,8 zachowują rozstaw 70±0,1 oraz gwintować M6 na głębokość 10. | 1b; 2
2; 4b |
| 4 | Wytaczać otwór ø 57 zgrubnie przelotowo i jednocześnie planować powierzchnie czołową wg rysunku | 4a
5a |
| 5 | Wytaczać otwór dokładnie na wymiar ø 57 H7 na głębokość 10. | 4b
5b |
| 6 | Od mocować przedmiot. | |

Rysunek operacyjny (str. 22)

Specjalny uchwyt frezarski

1. Zespoły narzędziowe wiertła ø 8,5 i pogłębiaczem ø 12
2. Zespoły narzędziowe wiertła ø 4,8 i gwintownikami M6
3. Zespół narzędziowy wiertło ø 4,8, gwintownik M6, pogłębiacz czołowy ø 18
4a. Wytaczało zespołowe wielostopniowe ø 21, ø 23, ø 25 do obróbki zgrubnej
4b. Wytaczało zespołowe ø 26J6, ø 22J6 do obróbki wykutacej
5a. Wytaczało zespołowe ø 57 i ø 90 do obróbki zgrubnej
5b. Wytaczało ø 58H7

Suwniarka, Sprawdzian dwustopniowy ø 58H7, ø 26J6, ø 22J6, sprawdzian do gwintów M6

Obraziarka zespołowa

<table>
<thead>
<tr>
<th>Uchwyty</th>
<th>Narzędzia</th>
<th>Sprawdziany</th>
<th>Stanowisko</th>
</tr>
</thead>
</table>

152
Proces obróbki przedmiotu klasy korpus na obrabiarce...
<table>
<thead>
<tr>
<th>Lp.</th>
<th>Czynność</th>
<th>% sprawdz.</th>
<th>Nazwa</th>
<th>Cecha</th>
<th>Wielkość</th>
<th>Ilość</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sprawdzić wymiar 75</td>
<td>1</td>
<td>Suwmiarka</td>
<td>MAUa</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Sprawdzić wymiar 15,5</td>
<td>1</td>
<td>Suwmiarka</td>
<td>MAUa</td>
<td>15,5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Sprawdzić wymiar 11</td>
<td>1</td>
<td>Suwmiarka</td>
<td>MAUa</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Sprawdzić wymiar 42</td>
<td>1</td>
<td>Suwmiarka</td>
<td>MAUa</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Sprawdzić wymiar 58</td>
<td>1</td>
<td>Suwmiarka</td>
<td>MAUa</td>
<td>58</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Sprawdzić wymiar 28</td>
<td>1</td>
<td>Suwmiarka</td>
<td>MAUa</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Sprawdzić średnice Ø58H7</td>
<td>2</td>
<td>Sprawdzian tłoczkowy Ø58H7</td>
<td>MSCa</td>
<td>Ø 58H7</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Sprawdzić średnice Ø 26J6, Ø 23, Ø 22J6</td>
<td>3</td>
<td>Sprawdzian tłoczkowy Ø 26J6, Ø 23, Ø 22J6</td>
<td>MSCa</td>
<td>Ø 26J6, Ø 23, Ø 22J6</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Sprawdzić głębokość 15</td>
<td>1</td>
<td>Suwmiarka</td>
<td>MAUa</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Sprawdzić gwint M6</td>
<td>1</td>
<td>Sprawdzian do gwintów</td>
<td>MSBg</td>
<td>M6</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Sprawdzić wymiar 70</td>
<td>2</td>
<td>Sprawdzian specjalny dwugraniczny</td>
<td>SsDw2</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Sprawdzić wymiar 88</td>
<td>2</td>
<td>Sprawdzian specjalny dwugraniczny</td>
<td>SsDw1</td>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Sprawdzić gładkość powierzchni otworów Ø 58H7, Ø 26J6, Ø 22J6</td>
<td>2</td>
<td>profilometr</td>
<td>T-1000</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>Nr Zadania</td>
<td>Treść zadania</td>
<td>Narzędzie skrawające</td>
<td>Narzędzie</td>
<td>Wymiary obrabianych</td>
<td>Warunki obróbki</td>
<td>Czas pomocy ty [min]</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>Mocować w uchwycie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1 0,2</td>
</tr>
<tr>
<td>2</td>
<td>Frezować na wymiar 3mm głowica frezarska J25-25040-21MV 125 ruumiarka MUA 100 100 100 120 22 120 1,5 1,5 1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1 1 0,1 0,1 0,1 0,1 0,1</td>
</tr>
<tr>
<td>3</td>
<td>Odmocować przedmiot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1 0,1 0,1</td>
</tr>
</tbody>
</table>

Opracował złotnik Łodziński
Spremował:
Zatwierdził:

<table>
<thead>
<tr>
<th>Głowica</th>
<th>Wymiary</th>
<th>Prędkość skrawania [m/min]</th>
<th>Prawo [mm/min]</th>
<th>Przemieszczenie</th>
<th>Zbiórka z uch.</th>
<th>Zbiórka z obr.</th>
<th>Pomiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>725-125Q40-21MV</td>
<td>125 ruumiarka MUA 100 100 100</td>
<td>120 1,5 1,5 1,5</td>
<td>2 120 1000</td>
<td>4216 0,12</td>
<td>0,1 0,1 0,1 0,1 0,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nazwa</th>
<th>Symbol</th>
<th>Wymiary</th>
<th>Prędkość skrawania [m/min]</th>
<th>Prawo [mm/min]</th>
<th>Przemieszczenie</th>
<th>Zbiórka z uch.</th>
<th>Zbiórka z obr.</th>
<th>Pomiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narzędzie skrawające</td>
<td>Narzędzie</td>
<td>Wymiary obrabianych</td>
<td>Warunki obróbki</td>
<td>Czas pomocy ty [min]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Narzędzie</th>
<th>Wymiary</th>
<th>Prędkość skrawania [m/min]</th>
<th>Prawo [mm/min]</th>
<th>Przemieszczenie</th>
<th>Zbiórka z uch.</th>
<th>Zbiórka z obr.</th>
<th>Pomiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Narzędzie</th>
<th>Wymiary</th>
<th>Prędkość skrawania [m/min]</th>
<th>Prawo [mm/min]</th>
<th>Przemieszczenie</th>
<th>Zbiórka z uch.</th>
<th>Zbiórka z obr.</th>
<th>Pomiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Narzędzie</th>
<th>Wymiary</th>
<th>Prędkość skrawania [m/min]</th>
<th>Prawo [mm/min]</th>
<th>Przemieszczenie</th>
<th>Zbiórka z uch.</th>
<th>Zbiórka z obr.</th>
<th>Pomiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Narzędzie</th>
<th>Wymiary</th>
<th>Prędkość skrawania [m/min]</th>
<th>Prawo [mm/min]</th>
<th>Przemieszczenie</th>
<th>Zbiórka z uch.</th>
<th>Zbiórka z obr.</th>
<th>Pomiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
<tr>
<td>Narzędzie</td>
<td>Wymiary</td>
<td>Prędkość skrawania [m/min]</td>
<td>Prawo [mm/min]</td>
<td>Przemieszczenie</td>
<td>Zbiórka z uch.</td>
<td>Zbiórka z obr.</td>
<td>Pomiary</td>
</tr>
</tbody>
</table>
4. Analiza otrzymanych wyników

Korzystając z literatury jak i katalogów narzędzi skrawających firmy Sandvik Coromant oraz własnego doświadczenia nabytego w toku studiów dobrano narzędzia oraz parametry obróbki. Umożliwiło to wykonanie obliczeń, których wyniki zostały przedstawione w kartach normowania obróbki: dla operacji 10 frezowania wstępnego i dla operacji 20 frezowania-wytaczania [5].

W operacji 10 czas przygotowawczo-zakończeniowy (tpz) oszacowano na 960 min. Jest to czas wymagany do uzbrojenia frezarki pionowej w oprzyrządowanie specjalne. Jest to jednak działanie jednorazowe w serii – stąd tpz w obliczeniach kart normowania obróbki....
niach czasu operacji dzieli się przez liczbę sztuk serii. Oprzyrządowanie obrabiarki stanowi stół obrótowy z 22 uchwytyami do obróbki przedmiotu w trybie ciągłym. Obroty stołu wynoszą 0,39 obr/min, a średnica podziałowa, na jakiej rozmieszczone elementy obrabiane jest równa 0,683 m, co przekłada się na prędkość liniową 1 m/min. Z tych danych otrzymano wartość posuwu \(f = 1000 \text{ mm/min} \). Po obliczeniu przy pomocy programu Excel otrzymano: czas kalkulacyjny \(t_k = 0,692 \text{ min} \), czas uzupełniający \(t_u = 0,062 \text{ min} \) a czas główny \(t_g = 0,12 \text{ min} \). Natomiast czas dla wykonania całej serii wyniósł 1153 h.

W operacji 20 czas przygotowawczo-zakończeniowy \((tpz) \) oszacowano na 1920 min. Czas ten wynika z konieczności montażu i kalibracji poszczególnych jednostek obróbczych względem półfabrykatu przed rozpoczęciem obróbki serii. Jest to operacja jednorazowa w serii, więc i tu również \(tpz \) zostało podzielone przez liczbę sztuk w serii. Kolejnym składnikiem tego czasu jest wymiana lub regulacja narzędzi skrawających wynikająca z ich zużycia oraz czynności obsługowe takie jak smarownie, oczyszczanie filtrów chłodziwa itp. Policzone również przy pomocy programu Excel czasy poszczególnych zabiegów w każdym układzie zabiegowym. Uwzględniono czasy przesterowania głowicy rewolwerowej z jednostkami wiertarskimi nr 2 i nr 3 oraz jednostkami wytaczarkami nr 4a i 4b, a także skrzynki napędowej jednostek wytaczarskich nr 1a i 1b. Otrzymano następujące wyniki: czas kalkulacyjny \(t_k = 3,549 \text{ min} \), czas uzupełniający \(t_u = 0,321 \text{ min} \). Z układów zabiegowych nr 2 i 3 wybrano czasy o największych wartościach, ponieważ czas główny układu zabiegowego wynika z czasu głównego zabiegu, który w nim trwa najdłużej. Wartości te zostały zaznaczone na ciemno w karcie normowania czasu obróbki. Następnie zsumowano z czasami głównymi pozostałych zabiegów otrzymując ostatecznie czas główny \(t_g = 0,809 \text{ min} \). Natomiast czas do wykonania całej serii wyniósł 5915 h.

Analizując wyniki stwierdzono, że czas potrzebny na wykonanie jednego przedmiotu wyniósł 0,929 min. Jest to suma czasów ogólnych obu operacji. Najbardziej czasochłonna okazała się obróbka zgrubna otworu stopniowego wytaczadłem wutzerając 0,34 min, wynika to jego średniej sztywności i dużego nadnaddatku uniemówliewającego zastosowania wyższych wartości posuwu. Najkrócej trwa wiercenie i gwintowanie otworu 0,08 min. Przyczyniła się do tego mała głębokość wiercenia 10 mm oraz krótki dobieg i wybieg narzędzia równy 2 mm.

Czas potrzebny do przygotowania całej serii przedmiotów do obróbki na obrabiarcie zespołowej wynosił 1153 h i jest ponad 5 razy mniejszy od czasu potrzebnego na obróbkę tej serii na obrabiarcie zespołowej – wynosi on tu 5915 h. Wynika z tego, że aby wykonać założoną liczbę 100 000 sztuk obrabiarka zespołowa powinna pracować w trzyzmianowym trybie pracy po 8 godzin prawie przez cały rok. Natomiast praca frezarki ograniczałaby się do około 8 godzin w tygodniu, co przekłada się
na 32 godziny w miesiącu roboczym. Dlatego sugeruje się zastosowanie cyklicznej pracy frezarki np. pierwsze dwa dni miesiąca i dwa ostatnie dni miesiąca.

4.1. Opis procesu obróbkowego powierzchni bazowej

Powierzchnia zaznaczona na ciemno (rys. 14), jest frezowana w na frezarce pionowej (CS-VBM-3V-A) wyposażonej w stół obrotowy. Obrabiarka pracuje w trybie ciągłym, który poprawia wydajność obróbki, przebieg operacji przedstawia schematycznie rysunek 15. Obróbka wstępnna na frezarce wynika z tego, że konstrukcja przedmiotu obrabianego wymuszałaby na obrabiarkę zespołowej operacje przemocowania. Skutkowałoby to większą złożonością maszyny i wydłużałyby to czas obróbki przedmiotu.

4.2. Opis przebiegu procesu obróbczego na opracowywanej obrabiarkie zespołowej

Kolejnym etapem procesu jest zamo-cowanie przedmiotu wstępnym obrabiowym w uchwycie specjalnym umieszczonym na zespołowej maszynie skrawającej. Uchwyt przedmiotu (rys. 5) ustala położenie przedmiotu obrabianego względem narzędzi obrabiających. Jest to uchwyt typu szczękowego. W zależności od infrastruktury związanej z dostarczaniem pół-fabrykatów i odbioru gotowych elementów oraz mediów dostępnych w miejscu pracy, zespół można zastosować mechanizm śrubowy, siłoworki pneumatyczne lub hydrauliczne.

Uchwyt przedmiotu zbudowany jest z podstawy (pozycja 1 rys. 5), w której umieszczona jest specjalna wkładka (pozycja 2 rys. 5) wykonana z materiału
Rysunek 5. Model 3D Uchwyt przedmiotu

Rysunek 6. Model 3D pierwszego zabiegu na obrabiarcie zespołowej

Rysunek 7. Model 3D drugiego zabiegu na obrabiarcie zespołowej

O podwyższonej twardości, z której powierzchnią będzie się stykać główna baza obróbkowa przedmiotu obrabianego. Do zapewnienia odpowiedniej pozycji przedmiotu względem narzędzi skrawających oraz do pewnego zamocowania przedmiotu posłużą dwie szczęki, wyposażone w nakładki przymowne o kącie 90 stopni (pozycja 3 rys. 5). Jedna ze szczęk posiada specjalne wyżłobienie umożliwiające dobieg i wybieg narzędzia (pozycja 4 rys. 5). Zaproponowane rozwiązanie uchwytu odbiera 6 stopni swobody przedmiotowi obrabianemu.

Na obrabiarcie zespołowej ma miejsce ostateczna obróbka pozostałych 18 powierzchni według rysunku wykonawczego (KMK 0.00.05).ODYbywa się to w czterech układach zabiegów.

W pierwszym układzie zabiegów (Lp. 2. – Instrukcja nr 2 oraz rys. 6) są wykonywane dwa otwory o średnicy 8,5 mm pogłębione na głębokość 8 mm i na średnicy 12 mm. Jednocześnie wiercony jest otwór o średnicy 4,8 mm gwintowany M 6 przelotowo, powierzchnia czołowa otaczająca otwór jest planowana (wskazuje ją jednostka wiertarska pokazana w prawym dolnym narożniku rysunku 6). Jednocześnie wytaczadło zespołowe zgrubnie wytacza przelotowy, stopniowy otwór na średnicę 25 mm i 21 mm jednocześnie obrabiając powierzchnię czołową tego otworu. W tym zabiegu udział biorą: jednostki obróbcze nr 5 i 3 oraz 1a.

Drugi układ zabiegów (Lp. 3. – Instrukcja nr 2) przedstawiony jest na rysunku 7. Odbywa się tu wytaczanie wykańczające podłużnego stopniowego, otworu prze-
l otowego na średnicę 26 J6 i 22 J6, wiercenie dwóch otworów o średnicy 4,8 mm i gwintowanie na głębokość 10 mm.

W tym zabiegu udział biorą: jednostka wiertarsko-gwintująca nr 2 oraz jednostka wytaczarska nr 1b.

Trzeci złożony zabieg (Lp. 4. – Instrukcja nr 2) na obrabiarcie zespołowym (rys. 8) to obróbka zgrubna otworu na średnicę 57 mm i planowanie powierzchni czołowej zaznaczonej na niebiesko. Zastosowane jest tu narzędzie zespołowe wytaczak-pogłębianczo-czołowy.

W tym zabiegu udział bierze: jednostka wytaczarska nr 4a.

Czwarty, a zarazem ostatni zabieg (Lp. 5. – Instrukcja nr 2) na obrabiarcie zespołowym (rys. 9) to wytaczanie wykazujące otworu o średnicy 58H7 na głębokości 10 mm.

W tym zabiegu udział bierze: jednostka wytaczarska nr 4b.

4.3. Wymagania konstrukcyjno-technologiczne obrabiarek zespołowych

Obrabiarka zespołowa powinna spełniać następujące wymagania:

1. posiada odpowiednią sztywność, wynika to z wielu kierunków obciążenia płynących od jednostek obróbczych,

Rysunek 8. Model 3D trzeciego zabiegu na obrabiarcie zespołowym

Rysunek 9. Model 3D czwartego zabiegu na obrabiarcie zespołowym

Źródło: Opracowanie własne.
Proces obróbki przedmiotu klasy korpusa na obrabiarce...

2. jej konstrukcja musi umożliwiać szybki i łatwy montaż przedmiotu w uchwycie, i demontaż,
3. uchwyt tej obrabiarki musi zapewniać pewne mocowanie przedmiotu niezależnie, z której strony jest obrabiany, przy czym musi zapewnić miejsce na wybiegi i dobiegi narzędzi obróbkowych,
4. obrabiać kilka powierzchni na raz w tym samym czasie, ograniczyć liczbę przejść do minimum, stosując narzędzia zespołowe,
5. zastosowanie głowic narzędziowych dostępnyc w handlu obniży cenę obrabiarki i uprości konstrukcję, jeśli jest taka możliwość,
6. odpowiedni system dozowania chłodziwa i jego rekuperacji, odprowadzania wętrów,
7. system kontrolowania i kompensacji wymiarów obróbczych, (system zderzaków, czujniki indukcyjne), diagnostyka zużycia narzędzi (układy optyczne, laserowe, itp.)
8. łatwy dostęp do smarowania elementów ruchomych, lub system smarowania, wynika to z długich okresów pracy obrabiarki i kosztownych jej przestojów; niepracująca maszyna nie zarabia.

Przykładowy widok obrabiarki zespołowej przedstawia rysunek 10, a przedmioty na niej obrabiane rysunek 11.

Rysunek 10. Przykładowa obrabiarka zespołowa typu LKP

161
Rysunek 11. Przedmioty obrabiane na obrabiarka zespołowej typu LKP

4.5. Proponowane rozwiązanie obrabiarki zespołowej

Powyżej przedstawione informacje pozwoliły na dobranie optymalnych rozwiązań konstrukcyjnych i technologicznych pod względem ergonomii obróbki przedmiotu (rys. KMK 0.00.05). Umożliwiło to spełnianie postawionych w punkcie 3.3 wymagań. Połączenie poszczególnych podzespołów stosowanych w układach zabiegów opisanych w 3.4.4, pozwala na schematyczne przedstawienie proponowanej obrabiarki. Widok ogólny tej obrabiarki przedstawiono na rysunku nr 12.

Głowica rewolwerowa (rys. 12, pozycja 3) wykonuje ruch obrotowy. Znajdują się w niej dwie jednostki wytaczarskie nr 4a i 4b, wyposażone w zespołowe wytaczałka do obróbki zgrubnej i dokładnej otworu oraz dwie jednostki wiertarskie (nr 2 i 3).

Pierwsza posiada dwa zespołowe narzędzia typu wiertło połączone z gwintownikiem, druga posiada dwa wiertła z pogłębiaczami walcowymi.

Suport (rys. 12, pozycja 2) przemieszcza się wzdłuż osi pionowej działania narzędzi skrawających, odpowiada za ich ruchy posuwowe.

Skrzynka napędowa jednostek wytaczarskich nr 1a i 1b, (rys. 12, pozycja 5) wykonuje obrót w zakresie od 0 do 90 stopni, oraz zapewnia ruch posuwowy wzdłuż
osi działania jednostki obrabiającej przedmiot, wyposażona jest w dwa wytaczadła zespołowe, pierwsze do obróbki zgrubnej drugie do wykańczającej.

Skrzynka napędowa jednostki wiertarskiej nr 5 (rys. 12, pozycja 6) wykonuje tylko ruch posuwowy wzdłuż osi działania zespołu narzędzi wiertło, gwintownik, pogłębiacz.

Uchwyt przedmiotu (rys. 12, pozycja 4) – to typ uchwytu szczękowego, którego budowę i działanie opisano w punkcie 4.2.

4.6. Ogólne porównanie procesów technologicznych produkcji seryjnej i masowej

Podstawową różnicą porównywanych procesów (ich przebieg jest widoczny w kartach technologicznych) jest, inna liczba operacji (10 dla produkcji seryjnej, a 4w produkcji masowej) oraz zabiegów w poszczególnych operacjach (operacja nr 20 w procesie dla produkcji masowej koncentruje w sobie aż 8 zabiegów, które w procesie dla produkcji seryjnej stanowią kolejne operacje wymagające zmiany stanowiska obróbczego. Koszty związane obsługą i wyposażaniem obrabiarek konwencjonalnych oraz logistyka związana z przenoszeniem przedmiotu obrabianego na kolejne obrabiarki niekorzystnie wpływa na wydajność produkcji i jej opłacalność w produkcjach seryjnych i masowych.

5. Podsumowanie

Korzystając z różnych źródeł przedstawiono w artykule informacje na temat budowy i zastosowania obrabiarek zespołowych. Wskazano ich wady i zalety. Umieszczono to dobranie optymalnych rozwiązań konstrukcyjnych i technologicznych pod względem ergonomii obróbki przedmiotu (nr rysunku KMK 00.05).

Opracowany proces technologiczny rozważanej części klasy korpus zawarty w artykule uwzględnia wiele wymagań konstrukcyjno-technologicznych postawionych w punkcie 4.3.

Zaproponowane założenia konstrukcyjne do obrabiarki zespołowej przedstawionej w punkcie 4.5 spełniają wymagania nr 2, 3, 4, 5 zawarte w punkcie 4.3. Pozostałe wymagania postawione obrabiarche zespołowej mogą stanowić zagadnienia do dalszych, bardziej szczegółowych rozważań „stricto” związanych z ostatecznymi projektami konstrukcyjnymi.

Koncentracja zabiegów na obrabiarcie zespołowej, a co za tym idzie zastąpienie kilku obrabiarek jedną generuje spore oszczędności wynikające z poboru energii, kosztów obsługi i konserwacji. Obróbka kilku powierzchni jednocześnie skraca czas obróbkę do wymaganego minimum, poprzez zastosowanie głowic wielonarzędziowych i narzędzi zespołowych pracujących w tym samym czasie.
Michał Kazimierczak

Choć wysoka cena obrabiarki przedstawionej w niniejszej pracy (można szacować ją w granicach od 500 tys. do 700 tys. zł) to przy założeniach wielkości produkcji w opracowanym procesie (produkcja masowa – 100 tys. sztuk), koszt obróbki jednego przedmiotu wynosi tylko 7 zł. Szacunkowo – obrabiarka spłaci się po około roku pracy.

<table>
<thead>
<tr>
<th>PWSZ WŁOCŁAWEK</th>
<th>KARTA TECHNOLOGICZNA</th>
<th>Nr sys KMK.0.00.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nazwa części: Korpus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opracował:</td>
<td>Data:</td>
<td>Półwyrob</td>
</tr>
<tr>
<td>Michał Kazimierczak</td>
<td>20.03.2018</td>
<td>Odlew kołowego</td>
</tr>
<tr>
<td>Lp.</td>
<td>Treść operacji</td>
<td>Stanołsko</td>
</tr>
<tr>
<td>10</td>
<td>Toczenie powierzchni czołowych wg instrukcji nr 2</td>
<td>Tokarka kopiuarka</td>
</tr>
<tr>
<td>20</td>
<td>Toczenie powierzchni czołowych wg instrukcji nr 2</td>
<td>Tokarka kopiuarka</td>
</tr>
<tr>
<td>25</td>
<td>Toczenie powierzchni wewnętrznych nr 3</td>
<td>Tokarka produkcyjna</td>
</tr>
<tr>
<td>30</td>
<td>Kontrola międzyoperacyjna nr 1</td>
<td>K.T.M</td>
</tr>
<tr>
<td>35</td>
<td>Wierczenie otworów wg instrukcji nr 4</td>
<td>Wiertarka kadubowa</td>
</tr>
<tr>
<td>40</td>
<td>Wierczenie otworów, gwintowanie wg instrukcji nr 5</td>
<td>Wiertarka kadubowa</td>
</tr>
<tr>
<td>50</td>
<td>Wierczenie otworów wg instrukcji nr 5</td>
<td>Wiertarka kadubowa</td>
</tr>
<tr>
<td>55</td>
<td>Kontrola międzyoperacyjna nr 2</td>
<td>K.T.M</td>
</tr>
<tr>
<td>60</td>
<td>Wykonanie podcięć wg instrukcji nr 7</td>
<td>Wiertarka kadubowa</td>
</tr>
<tr>
<td>65</td>
<td>Wiercienie i gwintowanie otworu wg instrukcji nr 8</td>
<td>Wiertarka kadubowa</td>
</tr>
<tr>
<td>70</td>
<td>Kontrola techniczna wg instrukcji nr 9</td>
<td>K.T.</td>
</tr>
</tbody>
</table>

Bibliografia: